

 Hochschule Esslingen MSc IA - System Design - Overview

 V3.0 Okt. 21 Copyright Prof. Dr.-Ing. W. Zimmermann SD1_00.DOC

MSc Industrial Automation - System Design

Prof. Dr.-Ing. Werner Zimmermann

I. System Development Process

 • Definition of a system

 • Decision making: − definition of goals
 − Eisenhower principle
 − weighted criteria assessment

 • Planning: − activity lists
 − time schedule

 • Development process − top down, bottom up

− partitioning and interfaces

 • Phase models − actions, results, milestones

 • Requirements analysis

II. Analytical System Design

 • Modeling dynamic

 systems

− state variables

− describing equations

− block diagrams

 • State space control − state space description

− control structure

− pole placement design

 • Observers − observer structure

− pole placement design

 • Optimization of control
systems

 • Identification of control

plants

 • Neuronal Networks − application in control systems

FHT Esslingen MSc IA - System Design - Module Development Process 0. 1

 V3.0 Oct. 21 Copyright Prof. Zimmermann SD1_10.DOC

Module System Development Process

Contents

A. Overview

1. Technical systems A. 1

2. Designing a system A. 3

3. Development project types A. 4

4. Development project goals A. 6

 Self study problems: GOAL1 – 4, EISENHOWER1

B. Decision Making and Planning

1. The NASA game B. 1

2. Weighted criteria assessment B. 7

3. Planning B.11

3.1 Planning - step by step B.12

3.2 Planning example B.14

3.3 Keys to successful planning B.19

 Self study problems: PLAN1, PLAN2

 Supplement: Microsoft Project - Getting started

C. Requirements Analysis and Project Phases

1. A simple project model C. 1

2. Requirements analysis

2.1 Example: Walkman AC adapter C. 2

2.2 Requirements for ‘Requirement Documents’ C. 5

 Self study problems: REQUIRE1, REQUIRE2

3. Real world projects

3.1 Problems with the ‘waterfall project model’ C. 7

3.2 Improving the development process C. 9

4. System architecture, partitioning and interfaces C.11

 Self study problems: PARTITION1, INTERFACE1-2

FHT Esslingen MSc IA - System Design - Module Development Process 0. 2

 V3.0 Oct. 21 Copyright Prof. Zimmermann SD1_10.DOC

Index

A

actions 3-1

activities 2-15

activity list 2-18

B

bottom-up 3-8

C

components 1-1

D

decision making 2-13

E

Eisenhower principle 1-8

F

first time right 3-7

G

goal 1-3

I

incremental development 3-10

interface 1-1

L

Lastenheft 3-3

M

milestone 3-1

O

organizing tools 2-18

P

partitioning 1-3

Pflichtenheft 3-3

phase model 3-2

planning 2-14

prerequisites 2-15

priorities 1-7

project management software 2-18

project types 1-4

R

rapid prototyping 3-10

redesign 3-7

resources 2-15

responsibilities 2-15

results 3-1

Risk assessment 3-4

S

scheduling 2-16

simultaneous engineering 3-10

spiral model 3-7

subsystem 1-2

supersystem 1-2

system 1-1

T

time schedule 2-16

to-do-list 2-18

top-down 3-8

tradeoff 2-17

V

V model 3-7

W

waterfall model 3-6

weighted criteria assessment 2-13

FHT Esslingen MSc IA - System Design - Module Development Process A. 1

 V3.0 Oct. 21 Copyright Prof. Zimmermann SD1_1A.DOC

Module System Development Process

A. Overview

1. Technical systems

A car as a technical system:

A system

• consists of components

e.g. engine, brakes, ...

• performs functions

 e.g. accelerating, braking, ...

• has external interfaces (to the outside world/environment)

 e.g. accel. and brake pedal, tires, ...

 and internal interfaces (between the components)

 e.g. accelerator pedal - engine

CAR

ROAD

DRIVER

FHT Esslingen MSc IA - System Design - Module Development Process A. 2

 V3.0 Oct. 21 Copyright Prof. Zimmermann SD1_1A.DOC

Most systems

• are components of super-systems, i.e. higher level system

 e.g. super-systems of a car:

 - a car is a component of the system 'traffic'

 - 'traffic' is a component of the system 'city'

 - . . .

• can be subdivided in subsystems, i.e. lower level systems

 e.g. subsystems of a car:

 - engine and engine management system

 - brakes and brake management system (ABS/ASR)

 - . . .

Example of a subsystem

Accelerator

pedal

Engine

Speed

Display

Engine

Management

ECU

Engine

injection

ignition

speed

tem-

perature

fuel air

exhaust

gas

D
ri
v
e
r

D
ri
v
e
 T
r
a
in

torque

speed

System border

• defines what is considered to be inside and outside of the

system

• can be arbitrarily chosen by the system engineer depending

on what is considered to be of interest

FHT Esslingen MSc IA - System Design - Module Development Process A. 3

 V3.0 Oct. 21 Copyright Prof. Zimmermann SD1_1A.DOC

2. Designing a system means

• establishing project goals

• defining the functions, which the system shall perform

• and “border conditions” like size, cost, ... User's view

-

• planing the development project Developer's view

• checking and refining the requirements

• partitioning the system (system concept/architecture), i.e.

• identify, which components are needed and

• assign functions to components

• defining the internal interfaces between the components

• developing or purchasing the components

__

Involved parties

Customer
(User)

System

Designer

Supplier

Component

Manufacturer

Component

Designer

FHT Esslingen MSc IA - System Design - Module Development Process A. 4

 V3.0 Oct. 21 Copyright Prof. Zimmermann SD1_1A.DOC

3. Development project types

Technical products can be divided in 3 major categories. De-

pending on the category, customer involvement during the

project and intensity of the project phases differ very much:

• Multiple customers - high volume products ("mass product")

 e.g. TV sets, mobile phones, office standard software

− At the end of the development process the product "waits"

for customers. The customer is not involved in the develop-

ment process, a marketing department within the company

defines technical features and target price.

− Analysis of competitor products is crucial.

− New products are feature enhanced old products.

− Price, public relation/marketing and time to market are often

more important than technical features.

• Single customer - high volume products

 e.g. automotive electronics

− Product design is mostly customer specific. The customer is

heavily involved in planning, requirements analysis, design

decisions and testing. → Development partnership

− In many cases the product is an add-in to the customer's

own product. In these cases the development process must

be synchronized to the customer's own development.

− Further development activities during operation/maintenance

phase to prolong production lifetime and for continued parts

cost reduction.

• Single customer - low volume product

 e.g. steel rolling mill, automobile production equipment

− Design is completely customer specific. → Engin. service

− Support during operation and maintenance of the "product"

are as important as the "product" development.

FHT Esslingen MSc IA - System Design - Module Development Process A. 5

 V3.0 Oct. 21 Copyright Prof. Zimmermann SD1_1A.DOC

A comparison:

 Multiple customers

high volume

products

Single customer

high volume

products

Single customer

low volume product

Customer

involvement

none very important

+++

Technical features less important very important

Parts cost very important

+++

not important

− − −
Development time short

months

medium ... long

1 ... 5 years

long

2 ... 5 years

Development cost low very high very important

+++

Time to market very important

+++

Important not important

Operation/

maintenance

no product care

cost reduction

very important

Product marketing very important not important

Production lifetime Short

months

Medium

2 ... 5 years

Very long

(incl. maintenance)

5 ... 10 years

FHT Esslingen MSc IA - System Design - Module Development Process A. 6

 V3.0 Oct. 21 Copyright Prof. Zimmermann SD1_1A.DOC

4. Development project goals must be defined in terms of

Market

Function

Cost Quality

Goals must be e.g. PC development project

• precise − low cost PC
 + total cost below $500

• measurable − optimum performance
 + performance under defined test
 conditions, e.g. benchmark test

• achievable − gain 100% market share
 + increase our sales volume by 25%

• consistent − use newest Intel CPU
 + use CPU which costs < $200

Goals may be conflicting, especially between involved parties.

FHT Esslingen MSc IA - System Design - Module Development Process A. 7

 V3.0 Oct. 21 Copyright Prof. Zimmermann SD1_1A.DOC

Example: Study MSc ITAE in Esslingen

Your goals: 1. Graduate with best grade in all subjects

 2. Graduate in the shortest possible time

 3. Earn $ 3000,- per month with student jobs

Will you be successful?

 Most likely not!

__

Discussing the goals:

↓ Criteria Alternatives →

 Goal 1 Goal 2 Goal 3

precise? Yes No

→ specify time

or date

Yes

measurable? Yes No

→ time or date:

yes

Yes

achievable? Only if you are

a genius !?

Yes No, students

may only work

<40hrs/month

consistent? No, need more time to work

Dealing with conflicting goals: Assign Priorities

e.g.

 A (highest priority) must be a achieved

 → a 'killer' feature

 B shall be achieved

 C may be achieved

 → a 'nice to have' feature

FHT Esslingen MSc IA - System Design - Module Development Process A. 8

 V3.0 Oct. 21 Copyright Prof. Zimmermann SD1_1A.DOC

How to set priorities?

• Eisenhower‘s principle

Don't confuse: important − urgent

 very important less important

very urgent A

• start at once

• need to do it

yourself

B

• look for help

• let somebody do for

you (delegate)

less urgent C

• keep for later

• schedule in your

activities list

W

• forget about it !

• put into the waste

paper basket

• Pareto’s rule: The 80% − 20% principle

80% of the total result can be achieved with 20% of the total

effort. The remaining 20% of the functions take more than 80% of the effort!

• Identify the 'must' functions → A

• The ‘rest’ goes into the B and C category

• Use incremental development:

- Implement the must functions and create a working

prototype with limited functionality

- Add functions and features incrementally according

to B and C categories

 - Finally optimize

FHT Esslingen MSc IA - System Design - Module Development Process B. 1

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

B. Decision Making and Planning

1. The NASA game

Imagine the following situation:

• You are in a team of 2 astronauts, who have landed on the

bright side of the moon.

• You are on an excursion with your lunar vehicle some

100 km away from your lander module (the rocket, which

will bring you back to your mother ship in the moon orbit).

• Unfortunately the lunar vehicle has broken down and you

have to walk back to your lander module.

• For such cases you have an emergency equipment, con-

sisting of the 12 items.

• However, you cannot carry all these items with you and

most likely during your march you will have to leave back

items from time to time. So you have to decide, which items

are more important for your survival than others.

FHT Esslingen MSc IA - System Design - Module Development Process B. 2

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

The items in your emergency kit are (unordered list) :

 • 90-110 MHz sender/receiver

 • Parachute

 • Matches

 • First aid kit

 • Stellar map (moon and stars)

 • 20 m rope

 • Signal pistol with flares

 • Portable heater

 • 20 l water

 • Compass

 • Two 5o kg oxygen tanks

 • Food concentrate

These items shall be assigned unique priorities from 1 (most

important) to 12 (least important). No two items must have

the same priority.

The assignment is done in two rounds:

a) Each student delivers his/her individual solution.

b) Students discuss and a agree on a team solution with 4...5

students being in a team.

FHT Esslingen MSc IA - System Design - Module Development Process B. 3

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

a) Individual solution:

Student name: ___________________________________

Items in my emergency kit:

 Item priority *1

 90-110 MHz sender/receiver

 Parachute

 Matches

 First aid kit

 Stellar map (moon and stars)

 20 m rope

 Signal pistol with flares

 Portable heater

 20 l water

 Compass

 Two 5o kg oxygen tanks

 Food concentrate

*1
Please assign priorities from 1 (most important) to 12 (least

important). No two items must have the same priority.

FHT Esslingen MSc IA - System Design - Module Development Process B. 4

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

b) Team solution:

Team members: ___________________________________

Items in our emergency kit:

 Item priority *1

 90-110 MHz sender/receiver

 Parachute

 Matches

 First aid kit

 Stellar map (moon and stars)

 20 m rope

 Signal pistol with flares

 Portable heater

 20 l water

 Compass

 Two 5o kg oxygen tanks

 Food concentrate

*1
Please assign priorities from 1 (most important) to 12 (least

important). No two items must have the same priority.

FHT Esslingen MSc IA - System Design - Module Development Process B. 5

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

Observations:

• Decisions can not always be made based on pure facts and

real knowledge → deal with uncertainty

• Decisions in groups can be influenced by communication

skills of group members → deal with the “human factor”

2. A formalized, semi-objective way of decision making:

Weighted criteria assessment

• Define the alternatives

• Formulate the criteria to assess the alternatives

 Use positive criteria rather than negative ones (if possible)

• Assess the importance of the criteria (“priority scale”)

 Use a ‘weight' scale, e.g. 10 for 'most important', 1 for

'least important'

• Assess the alternatives criterion by criterion

 Use a point scale, e.g. 10 for 'best', 0 for 'worst'

• Multiply your weights with your points and sum up for each

alternative

An example situation:

• You are a FHTE student, looking forward to the 2 months

summer break.

• Next semester you will start working on your master thesis.

• You have an old car in very bad condition. A new car would

cost $1500 minimum.

• You have a friend, living in Madrid/Spain. Visiting your friend

would cost $800 minimum.

• You have $1200.

What to do: Work and buy a new car or visit your friend?

FHT Esslingen MSc IA - System Design - Module Development Process B. 6

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

Hints for using this method:

• Try to spread the weight and the assessment scale to better

differentiate as much as possible.

• If sums are close to each other, the decision still is unclear.

Review your weights or try to find more criteria.

• Remove those criteria, which nearly have the same meaning

(e.g. “gain working experience” and “gain experience in for-

eign countries”) and try to reformulate one common criteri-

on, including both goals (e.g. “gain experience which is

helpful for your future job”).

→ By having to many criteria with nearly identical mea-

ning the decision process can be easily manipulated

in favor of one alternative.

• Try to find compromise alternatives.

• Don't trust blindly! Critically review your results. In case of

unexpected results, check your criteria and weights.

It is the discussion process, forcing you to think about, ex-

press and understand, what you and the others in the team

really want or feel, which makes this method valid, not the

naked result values.

FHT Esslingen MSc IA - System Design - Module Development Process B. 7

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

 Alternative 1

Work and buy a
new car

Alternative 2

Visit your friend in
Madrid

Alternative 3

Criterion Weight Points Points x
Weight

Points Points x
Weight

Points Points x
Weight

 Ensure mobility

6 10 60 0 0

 Recreate from student

life stress

1 1 1 10 10

 Relationship to your

friend

4 0 0 10 40

 Gain experience which is

helpful in your future job

10 8 80 5 50

 Sum: 141 Sum: 100 Sum:

FHT Esslingen MSc IA - System Design - Module Development Process B. 8

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

 Alternative 1

Alternative 2

Alternative 3

Criterion Weight Points Points x
Weight

Points Points x
Weight

Points Points x
Weight

 Sum: Sum: Sum:

FHT Esslingen MSc IA - System Design - Module Development Process B. 9

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

3. Planning

... is the key to successful projects. Nearly all every day life

activities include some amount of planning.

Examples:

• traveling:

− Where to go?

− Which routes to take to get there?

− When does the bus/train/plane go?

− Hotel/camp ground reservation made?

− Passport valid, visa needed?

− Credit card, foreign currency, traveler cheques availa-

ble?

− How many and which clothes needed?

− . . .

• buying food:

− What do you want to eat/drink?

− Contents of refrigerator checked?

− In which shops to buy?

− "Transportation" capacity sufficient?

− Enough money available?

− . . .

• . . .

Planning consists of 3 tasks:

a) Collecting the data basis for planning

b) Scheduling activities (time table="making the plan")

c) Continuos controlling and correcting the plan ("feedback")

FHT Esslingen MSc IA - System Design - Module Development Process B. 10

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

3.1 Planning - step by step

a) Collecting the data basis for planning

1. Define activities - what must be done ?

• Write down all activities, which must be performed during

the project → activity list

• Specify the expected result of each activity. Define, how

to check, whether an activity was carried out successful.

• Start with a brainstorming approach, i.e. write down ac-

tivities without any order as they come into your mind.

• Then try to group the activities, e.g. by assigning them to

the different project phases (see chap. C).

2. Define responsibilities - who does it ?

• For each activity write down, who has to perform it

("human resources"), i.e. who is responsible, that the de-

sired results are available in time. Always assign humans

("personal responsibility") not organizations like compa-

nies, departments, ... !

3. Define prerequisites - what is needed before the

 (interdependencies) activity can begin ?

• For each activity think about, which results from other ac-

tivities will be needed, before this activity can begin (e.g.

PCB design does only make sense, when the circuit de-

sign is completed and circuit diagram and parts list are

available).

4. Define technical resources - what is needed during

 the activity ?

• E.g. EMC test cell for EMC tests, prototype vehicle, ...

5. Define needed/available time - how long does the activity

 take ?

FHT Esslingen MSc IA - System Design - Module Development Process B. 11

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

• For each activity estimate, how long it will take to carry out

the activity.

• In some cases the available time for an activity (or the whole

project) is forced by conditions outside of your control (e.g.

road winter testing for vehicles in Europe is limited to De-

cember to March, your master thesis must be finished within

6 months, ...). This will define the amount of resources

needed, to carry out all activities in the available time or limit

the number of activities, which can be carried out.

b) Scheduling the activities

6. Define the sequence - when will it be done ?

• The interdependencies of the activities (step 3) and the hu-

man (step 2) and technical resources (step 4) define a logical

sequence of the activities.

• Activities, which do not conflict with respect to resources

and interdependencies can be paralleled to reduce the overall

time.

• Together with the needed or available time (step 5) for each

activity a → time schedule (the "plan") can be established.

Time schedules typically are presented as GANTT or PERT

diagram.

c) Continuos controlling and correcting the plan ("Feedback")

• The begin and end of all activities must be monitored and

the results checked. If the reality and the plan differ (the

usual case), the plan must be corrected.

• At the beginning of a project, the activities may be rather

coarse, summarizing rather than going into detail. During the

project details will be worked out step by step. Typically at

the end of each phase, the next phase(s) are planned in

more detail.

FHT Esslingen MSc IA - System Design - Module Development Process B. 12

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

3.2 A planning example

Establish a coarse plan for the development of a mobile phone.

Note:

To simplify the plan, activities for

• market analysis,

• marketing campaign and introduction

• production preparation

• documentation and certification

• . . .

will not be considered here.

Remarks:

• Activity lists and schedules are partially redundant. Activity

lists are better suited for details. Schedules are better suited

to show the sequence of the activities.

• Often various levels of detail are necessary, e.g. for man-

agement a schedule with major phases is sufficient, where-

as for engineering staff activities must be broken down to

details.

• To reduce redundancy, allow various views on the data and

easily adapt the plan to any changes during the project,

project management software like MS Project is available.

Other tools like Outlook or PDA software may also offer

partial planning support.

However:

Planning is still an 'engineering' task and cannot be done au-

tomatically!

FHT Esslingen MSc IA - System Design - Module Development Process B. 13

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

Activity list
What? Who? How

long?
When? Done?

 Activity - Prerequisites (PR) - resources (RS) - results (R) Responsibility Duration Begin End Check

1 Requirements analysis

PR: Marketing analysis, R: Req.Doc

Marketing

Prod.Planning

2w See

Schedule

2 Concept phase

PR: 1, R: System Architecture and Spec. Doc

HW, SW, ME

concept team

2w

3 Mechanical design

PR: 2, R: Case prototype

ME dept. 3w

4 Hardware design

PR:2+(3), R: PCB prototype

HW dept. 6w

5 Mechanical + HW integration

PR: 3 + 4, R: Working prototype HW

HW, ME 1w

6 Software design

PR: 2, RS: Breadboard HW, R: SW prototype (?)

SW dept. 8w

7 Hardware + software integration

PR: 4+6, Working prototype

HW, SW 2w

8 Prototype test

PR: 5+7, R: Test documentation

Test Team 4w

9 Redesign/Retest (details like 4...9)

PR: 9, R: Production ready product

HW, SW,

ME

4w

FHT Esslingen MSc IA - System Design - Module Development Process B. 14

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

Schedule
What? Who? When? (scale is CW=calender weeks)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 Req. analysis MG, PP

2 Concept phase Concept T.

2.1 Concept approval Chief Eng.

 Implementation

3 Mechanical design ME

4 Hardware design HW

5 ME/HW integration HW, ME

6 Software design SW

7 HW/SW integration HW, SW

7.1 Prototype release Chief Eng.

8 Prototype test Test T.

8.1 Test evaluation Chief Eng.

9 Redesign/Retest All

9.1 Release for Prod. Chief Eng.

Begin of activity End of activity Milestone DoneLegend:

FHT Esslingen MSc IA - System Design - Module Development Process B. 15

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

Activity list
What? Who? How

long?
When? Done?

 Activity - Prerequisites (PR) - resources (RS) - results (R) Responsibility Duration Begin End Check

FHT Esslingen MSc IA - System Design - Module Development Process B. 16

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

Schedule
What? Who? When? (scale is)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Begin of activity End of activity Milestone DoneLegend:

FHT Esslingen MSc IA - System Design - Module Development Process B. 17

V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1B.DOC

3.3 Keys to successful planning

1. Agreement with all involved parties

• If others are involved in your project to carry out activities,

deliver input for your project or use your results, let them

specify their own activities and the time needed for them.

• No project will succeed, if not all involved parties agree to

their part of the activity list and time schedule.

2. Don't overconstraint the plan

• A plan is a tradeoff between activities, resources and time.

Not all of these 3 items may be predefined:

- If activities and resources are predefined, the time is an out-

put of the planning process rather than an input.

- If resources and time are predefined, the possible activities

are an output, resulting in limited or canceled activities or

activities carried out with limited quality.

3. Don't use best case planning

• Leave room for the unexpected in your plans! If anything can

go wrong, it will ... (Murphy's law). "First time right" and

"zero failure" are good goals, but hard to achieve.

• Include milestones, where to check results and include

phases for correcting them ('redesign'). The time between

the milestones shall be as short as possible (use 'sub-

milestones'), to make the feedback loops small.

• Sequence activities according to their priority, put less im-

portant activities at the end! If the project runs out of time,

cut or shorten these activities.

4. Build up planning experience

• Always review your projects to learn for the next project.

What was good, what went wrong? Which was the actual

time needed? Which partners were reliable?

FHT Esslingen MSc IA - System Design - Module Development Process C. 1

 V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1C.DOC

C. Requirements Analysis and Project Phases

1. A simple project model

Requirements

 ↓

Concept

 ↓

Implementation

 ↓

Test

 ↓

Waterfall project model
(phase model)

Operation and Maintenance

Each phase has

• activities
... to be performed to produce the phase's result

 e.g. in the implementation phase:

 circuit development, PCB development, ...

• results
- "products", documenting the results of the phase

 =input for next phase

 e.g. at the end of the requirements phase:

 hardware/software specification document

 e.g. at the end of the implementation phase:

 fully functional prototype

• milestone(s) or gate(s)
 - result(s) which must be achieved and (formally) be

 approved before proceeding to the next phase

 e.g. at the end of the test phase: release for production

In big projects each phase will be subdivided in subphases

with parallel and sequential activities.

FHT Esslingen MSc IA - System Design - Module Development Process C. 2

 V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1C.DOC

2. Requirements analysis

2.1 Example: Walkman AC Adapter

Original requirements specified by the customer:

• Develop an AC adapter for a walkman, to connect the
walkman to the mains power supply. The adapter will be

sold in Europe.

Refined requirements

• After the designer has interviewed the customer, a detailed
requirements document can be written:

Requirements Document for FHTE-Walkman AC Adapter

1. Purpose

This paper describes an AC adapter for our FHTE-walkman, to

connect the FHTE-walkman to the mains power supply.

2. Marketing Information

The product is to be sold as an option to those customers,

who also buy our FHTE-walkman. Competition and their prod-

ucts’ features were already described in the FHTE-walkman

marketing study. However, the AC adapter will only be sold in

Europe.

3. Function

3.1 Normal Operation

The AC adapter shall deliver a constant DC output voltage at a

variable output current within the specified AC input voltage

range. There shall be no user selectable or adjustable parame-

ters.

3.2 Startup and Shutdown Procedure

The AC adapter shall start and stop operation, whenever the

AC input connector is plugged into or removed from a mains

socket. The load may or may not be connected during startup

FHT Esslingen MSc IA - System Design - Module Development Process C. 3

 V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1C.DOC

and shutdown and may be connected or removed during nor-

mal operation.

3.3 Failure Behavior

The adapter's output shall be short circuit protected. The

adapter may turn off its output voltage, if the adapter's inter-

nal temperature becomes too high. It must turn on again after

cooling down, if the input plug is removed and reconnected.

3.4 Additional Functions

None

4. Technical Data

4.1 Electrical and Mechanical (see also 3.2) Interface

• Input 110 ... 230V±10% / AC 50 Hz

 2pin Euro plug with 2.5m cable

• Output 9V DC±3%, 0 ... 500mA

 isolated from input

 3.5mm socket

4.2 Case

• Material non-conductive plastic

• Color black or gray

• Insulation: double insulated,

 comply with VDE 100

• Size < 6 x 6 x 7 cm³
• Weight < 250g
• Surface temperature < 50°C

4.3 User Interface

• Switches and keys none, turn on by plugging in the

 input cable

• Display, control lamps LED (green), if output voltage is in

 specified range, brightness t.b.d.

FHT Esslingen MSc IA - System Design - Module Development Process C. 4

 V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1C.DOC

4.4 Environmental Conditions

• Ambient temperature: +10...30°C

• Air humidity: 10 ... 80%

• Sealing: IP 44

• Electromagnetic compatibility: CE

• Vibration and shock: 1g sine wave 1 ... 1000Hz

 must withstand a 1m fall

 on concrete floor

5. Commercial Data

• Projected sales volume: 10000 (1st 3 months)

 100 000 (total in 3 years)

• Projected parts cost: < $ 20
• Projected availability: Preproduction samples May 2004

• Start of Production Sep. 2004

FHT Esslingen MSc IA - System Design - Module Development Process C. 5

 V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1C.DOC

2.2 Requirements for ‘Requirement Documents’

• Requirement documents should be written from a us-
er/customer’s view, defining, what the system/product

should do, not how it is implemented.
During the concept phase, the requirements document is

converted into a ‘Specification Document’, which describes,

how the system/product shall be implemented together with

a detailed project plan and a parts and development cost es-

timation.

Required contents:
• Functions of the system in all operating modes. Many cus-
tomers forget to specify startup and shutdown procedures

and the desired behavior in failure situations
• Electrical and mechanical interfaces description
• User interface description (how to operate the system)
• Environmental conditions (ambient temperature, sealing, vi-
bration, EMC, ... for hardware; computer platform, operating

system, disk/ram sizes, ... for software)
• A requirements document should refer to or include a short
abstract of a marketing study, showing the main competi-

tors, market share and competing products with key fea-

tures and prices. Very often such a marketing study initializ-

es the product development project.

Style
• Use data rather than purely describing properties (minimum
and maximum values or nominal values and tolerances if

possible)
• Use established standards (e.g. IEC, ISO, ANSI, ...), where
applicable

• Include all items necessary for product development. If these
items cannot yet be defined, mark them as “t.b.d= to be

defined later”.

FHT Esslingen MSc IA - System Design - Module Development Process C. 6

 V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1C.DOC

Intentionally left blank

FHT Esslingen MSc IA - System Design - Module Development Process C. 7

 V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1C.DOC

3. Real world projects

3.1 Problems with the waterfall project model

Requirements

 ↓

Concept

 ↓

Implementation

 ↓

Test

 ↓

Operation and Maintenance

The waterfall model is strictly sequential ...

Nr. Aufgabe

1 Requirements analysis

2 Project Decision

3 Concept phase

4 Concept approvement

5 Implementation phase

6 Prototype release

7 Test

8 Production release

9 Operation and Maintenance

Aug Sep Okt Nov Dez Jan Feb Mär Apr Mai Jun Jul Aug

2000

. . . real world projects are not ! In real world projects

• due to missing information not all details for later phases can
be specified in early phases

• due to technical problems implementation tradeoffs have ret-
rospective effects on the concept or even on the require-

ments

• time or resource constraints do not allow a fully sequential
schedule

• customer or market demands may change (the longer the
project, the more this is likely)

FHT Esslingen MSc IA - System Design - Module Development Process C. 8

 V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1C.DOC

• Long feedback loops V-model of software dev. BAD

Requirements

 Analysis

 Software

Architecture

 Design

 Module

Design and Coding

Module

 Test

Integration

 Test

System

 Test

(Run single Module)

(Run complete software

 in simulated environment)

(Run complete system)

verify

verify

verify

time

time

Errors in the requirements analysis (first phase of the develop-

ment process), causing a wrong system behavior, are often

only found during the system test (at the end of the develop-

ment process)

Spiral Model: Incremental design instead of "first time right"

Requirements

ConceptImplementation

Test

time

Final

Product

1st 2nd 3rd

Prototype

• Incremental design: Plan to refine requirements and proto-
type function in a carefully planned step-by-step process

FHT Esslingen MSc IA - System Design - Module Development Process C. 9

 V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1C.DOC

3.2 Improving the development process

• Top-Down vs. Bottom-Up

Top-down: Proceed from a global overview (goals, objects,

block diagram level, interfaces,...) to the detailed level (algo-

rithms, circuits, ...)

Bottom-up: Proceed from the detailed implementation level to

the complete system

Example: Items to solve when designing a telephone network

TOP How many users at which locations?

 How often and how long will the calls

 between the different locations be?

 ...

MIDDLE Wireless or wire-bound transmission?

 Optical or electrical?

 Analog or digital?

 ...

 Class A or class A/B audio amplifier?

BOTTOM RJ45 or TAE connector?

− Use a top-down approach to get the big picture fast (require-
ments, concept, major building blocks)

− Identify the critical technical problems (“job killers”)

− Use a bottom-up approach to find out early, if and how the
critical technical problems can be solved

→ make a good concept and eliminate risks early

• Rapid prototyping simulation and implementation tools

− Requirements and concept are verified by simulation rather
than waiting until the implementation is completed.

− Prototypes are build by automatic generation tools (e.g. pro-
gram code synthesis from UML models, circuit synthesis

from VHDL/Verilog descriptions)

→ reduce errors in requirements and implementation

FHT Esslingen MSc IA - System Design - Module Development Process C. 10

 V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1C.DOC

• Simultaneous engineering (Parallel design)

− Split up the development between simultaneous working

groups, e.g. PC development → HW/SW co-design

Requirements

Implementation:

Motherboard

BIOS

Power supply

Integration

Integration

Case

 → reduces overall development time

− Simultaneous engineering requires:
* well-defined interfaces between the modules

* well-defined information flow between design groups

FHT Esslingen MSc IA - System Design - Module Development Process C. 11

 V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1C.DOC

4. System Architecture, Partitioning and Interfaces

Examples

Horizontally and vertically structuring a system in blocks

(modules) and layers.

• Stereo radio set

 An-

tenna

Tuner

 Pre-

amplifier

 Pre-

amplifier

Equalizer

Equalizer

 Power

Amplifier

 Power

Amplifier

Speakers

Power supply

Operator panel

 Horizontally structured (block diagram structure)

• PC based sound processing

Graphical User Interface

Sound Processing Algorithms

Operating System API

Hardware Drivers

Memory
A

D

D

A

Hardware

Software

Sound

Card

Vertically structured ("layered")

FHT Esslingen MSc IA - System Design - Module Development Process C. 12

 V3.0 Okt. 21 Copyright Prof. Zimmermann SD1_1C.DOC

Partitioning / structuring principles

• Signal flow centered partitioning
- combine functions which lie in the same signal path (sig-

nal flow centered) e.g. left channel – right channel

• Function oriented partitioning:
- Combine similar functions

e.g. preamplifier – equalizer - ...

 e.g. physical layer – core logic – user interface

Design rules for partitioning and interfaces:

• Modules shall have clearly defined functions and interfaces

• Modules shall be independent (during development, manu-
facturing, test, maintenance, ...)

• Separate "stable" and "variable" functions

• Realize in software, what needs to be field upgradable

• Interfaces shall be "small and simple” (low number of signals, pa-
rameters, ...)

• Interfaces shall be robust (hardware: short circuit / overvoltage protect-
ed, software: parameter checking, error codes, ...)

• Don't reinvent the wheel, use established standards for in-
terfaces and standard hardware/software modules (where

applicable, especially in low volume products)!

Design and partitioning rules apply equally to hardware and software → see Soft-

ware engineering module in Information Technology.

Hochschule Esslingen MSc IA - System Design - Module Neural Networks

 V2.0 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_50.doc

Module Neural Networks

1. Application Example 1

2. Artifical Neurons 4

3. Single Layer Feeforward Neural Networks 6

4. Multilayer Feedforward Neural Networks 8

5. Learning Process 10

5.1 Delta rule for single layer networks 12

5.2 Error backpropagation for multilayer networks 14

6. Application Example Continued 15

7. Applying Neural Networks in Control Engineering

7.1 Control Plant Models 19

7.2 Nonlinear Controllers 20

7.3 Neural Network as Inverse Reference Model Controller 21

Literature 24

Appendix A: Mathematical Background of the Learning Algorithms 25

Appendix B: Short Overview about Matlab’s Neural Networks Toolbox 29

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 1

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Neural Networks – Application in Control Engineering

1. Application Example

• A golf ball shall be driven over a distance s to meet the target green. Unfortunately, there is a
row of bushes with height h in the middle between the golf player and the target green.
Which driving angle α and which driving speed v is necessary, to directly hit the target?

x

y

ss /2

h

v

α

Solution using a classical open loop control algorithm:

• Under ideal conditions, i.e. neglecting the air resistance and the ball’s spin, the ball’s flight
curve can be described by a parabolic trajectory:

 x(t) = v · cosα · t (1) y(t) = v · sin α · t −
1
2 · g · t

2 (2)

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 2

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

For a given set of s and h, the necessary speed v and angle α can be computed from equations
(1) and (2) and converted into an appropriate open loop control algorithm:

a rctan
4h

s

h

s
α

v
2sinα·cosα

s ·g

Nevertheless, this solution is problematic:
Due to the air resistance and the spin of the ball, the ball’s real trajectory will not be an ideal
parabolic curve. So with an open loop control algorithm some empirical correction factors will
be necessary.

How does a human being solve such a problem?

• Do some training:
 · Drive golf balls with various different values of v and α
 · Learn which height h and distance s the trajectory has and correct v and α, until a given

set of s and h can be achieved.

• Practice golf:
· Based on the learned values play golf. Interpolate and extrapolate experience to different
sets of s, h.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 3

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Neural Networks try to model the human being’s approach using a simple mathematical model
of the human brain:

Biological network

Cell Body

Dendrites (inputs)

Axon (outputs)

Synapse

(connection

point)

Artificial neural network

h

s

α

v

Artifical

Neural

Network

inputs outputs

 Simple, slow processing basic element (neuron) approx. 1ms
 Many of these basic elements working in parallel (parallelism) approx. 1011
 Many interconnections between the basic elements (network) approx. 104 per neuron
 Nonlinear behavior of the elements with thresholds Data of human brain
 Learning by training does ‘strengthen’ or ‘weaken’ the connections
 Capability for generalization (interpolation and extrapolation) from trained experience

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 4

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

2. Artificial Neurons (Perceptron, Frank Rosenblatt 1957)

.
.
.

f(u)
u

y

w1

w2

wn

b

1

x1

x
2

x
n

.

.

.

n

inputs Bias

activation

function

1

output

weights

.

.

.

y = f (u) = f (wT · x + b)

x ... column vector of n input signals

wT ... row vector of n weight factors

The biological neuron is modeled as the weighted sum u of n input signals x1,…xn plus a bias
value b. The sum is converted into an output signal y by means of a (probably) nonlinear func-
tion f(u).

Please note: In neural network literature f(u) sometimes is named as ‘transfer function’, even if it does describe a static input-
output relation. Don’t mix this up with classical Laplace transfer functions which describe dynamic behavior.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 5

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Theoretically, f(u) may be an arbitrary function. For practical use in control engineering, f(u)
should be a monotonous increasing, differentiable function. Commonly used functions are:

u

y

Pu re L inear

(M atlab : pu re lin ())

u

y

Log -S igm oid

(M atlab : logs ig ())

u

y

Tan -S igm oid

(M atlab : tans ig ())

1 1

-1

u

y

Hard -L im ite r

(M atlab : ha rd lim ())

no t su ited fo r contro l,

used in c lass ifica tion

1

y = u y =
1

1− e−u
y =

e
+u + e−u

e
+u − e−u

Theoretically, input signals of various magnitude can be adapted by appropriate weighing fac-
tors. However, to avoid numerical implementation problems, input signals should be normalized
into a 0 … 1 or −1 … +1 range. When using normalized values, the absolute value of a weigh-
ing factor directly indicates the ‘importance’ of its associated signal.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 6

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

3. Single Layer Feedforward Neural Network (Single Layer Perceptron)

To generate m output signals out of n input signals, a single layer neural network with m neu-
rons can be used:

f (u) y

1

x
1

x
2

x
n

.

.

.

n inputs m outputs

1

1

1
1

y
2

y
m

w
11

w
21

w
12

w
m2

w
mn

w
2n

w
1n

b
1

b
2

b
m

u
1

1

f (u)
2 2

f (u)
m m

u
2

u
m

layer with m neurons

.

.

.

.

.

.

y = f (u) = f (W · x + b)

 x ... column vector of n input signals

 y ... column vector of m output signals

 b … column vector of m bias values

 W ... m x n matrix of weight factors

Typically, all m neurons use the same acti-

vation function f(u).

Please note: To keep the drawing simple, the input signal connections have been marked by the weight factors w i k (i … index

of the output signal yi, with k … index of the input signal xk), rather than drawing separate gain blocks.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 7

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Single layer feedforward nets with hard limiting activation functions (Perceptron net) often are
used for classification.

Example: A single neuron is used to sort and classify fruit into the two classes ‘orange’ and
‘banana’. Two properties of the fruit are measured and are used as input signals to the net:

 x1: shape with an oval shape giving a more positive signal than a long shape
 x2: color with red giving a more positive signal than yellow

conveyor belt

shape

sensor

color

sensor

.
.
.

u
y

w
1

w
2

b

1

x
1

x
2

neural

network

is orange

is banana

x
1

shape

x
2
 color

ovallong

red

yellow

w
1
x
1
+w

2
x
2
+b=0

ORANGES

BANANAS

The hard limiting activation function splits the x1 – x2 plane into two parts with the border defined by w1, w2 and b.

With m neurons, classification with 2m classes is possible.

The single layer feedforward net (no internal feedback paths) can generate arbitrary linearly
separable functions (example of a function which is not linearly separable: XOR).

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 8

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Single layer feedforward nets with linear activation functions (Adalin net) can be used as signal
processing filters.

Example: The input signal is fed into a tapped chain of unit delays. The single neuron network is
connected to the taps.

z-1 z-1

u output

s ignal

y (t)

w
3

w
2

w
1 b

1

x
3

x
2

x
1

neural network

input

s ignal

s (t)

Using z-transform analysis, the networks output signal is

Y(z) = (w1 + w2 z−1 + w3 z−2) S(z) + b

→ for b=0 → G(z) =
Y(z)
S(z) = w1 + w2 z−1 + w3 z−2

This is the well-known characteristic of a digital signal processing FIR filter.

By also feeding y(t) into a tapped delay chain and connecting the taps to net inputs, IIR filters
can be implemented as well.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 9

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

4. Multilayer Feedforward Neural Network (Two Layer Perceptron)

To overcome the limitations of the single layer network, two layers can be combined:

f

1

x
1

x
2

x
n

.

.

.

n

inputs

m

outputs

1

1

H

y
Hk
=

x
Ok

w
H11

b
H1

b
H2

b
Hk

y

1

1

1

1

y
2

y
m

b
O1

b
O2

b
Om

w
O11

w
Omk

w
Hkn

f
H

f
H

f
O

f
O

f
O

hidden layer

with k neurons

.

.

.

.

.

.

output layer

with m neurons

y
H2
=

x
O2

y
H1
=

x
O1

Hidden layer:

yH =xO= fH (WH · x + bH)

 x ... column vector of n input signals

 yH ... column vector of k hidden signals

 bH … column vector of k bias values

 WH ... k x n matrix of weight factors

Output layer:

y = fO (WO · xO + bO)

 y ... column vector of m output signals

 bO … column vector of m bias values

 WO ... m x k matrix of weight factors

 The number of neurons in the hidden layer can be freely chosen, typ. n ≠ k ≠ m

 The hidden layer and the output layer often use different activation functions fH() (typically

sigmoid) and fO() (typically linear)

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 10

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Note:

 Many activities in the scientific community deal with neuronal networks. So many different
network structures have been proposed (and will be in the future), e.g. multilayer feedfor-
ward networks or networks with internal feedback. Each of these structures does have its
special advantages and disadvantages and is suited for a special application.

 Only the single and multilayer feedforward networks will be discussed here, because they
are the oldest, best understood and most frequently used structures.

Implementing dynamic behavior in feedforward neural networks

• Multilayer feedforward networks can realize arbitrary nonlinear, however static functional re-
lations between inputs and outputs. To implement dynamic behavior, the input signal(s) can
be connected via a chain of unit delays (similar to an nonlinear FIR filter):

z-1 z-1 z-1. . .

.

.

.

.

.

.

input

signal

output

signals

Neural

Network

• Alternatively the network may use internal feedback, however, as is well-known from feed-
back control systems, this can cause stability problems.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 11

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

5. Learning Process

The real charm of neural networks comes from the fact, that in contrast to state space control-
ler e.g. the parameters need not be designed using complicated theoretical methods but can be
“learned by example” in a training phase. Theoretically there a three types of learning:

• Supervised learning: A category of learning methods, where the network is provided with a
set of input values and expected (=target) output values { x(1), y*(1)}, { x(2), y*(2)}, { x(3),
y*(3)}, . . . and the weight and bias factors W and b are tuned as to minimize the (sum of the
squared) error between the expected output values y* and the real output values y. This is
the natural form of training for neural networks

• Reinforcement learning: A category of learning methods for situations, where no target out-
put values are available, but some sort of grade value, which summarizes the “quality” of the
output values in one scalar. During the training process the weight and bias factors are tuned
in order to optimize this grade value. Such training methods are only applicable to certain
kinds of problems and are therefore rarely used, but find some interest in control engineering,
where e.g. the integrated absolute error (ITAE) can be used as a grade.

• Unsupervised learning: Theoretically, there is also the possibility, that the network learns
from input values only without any target output values or grades, but to present these
methods are investigated in research with no practical applications in control engineering.

Only supervised learning will be presented here. For details about the other types see the literature.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 12

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

5.1 Learning Process for Single Layer Feedforward Networks: Delta Rule by Widrow-Hoff

Delta rule for supervised learning:

• Initialize the weight and bias factors with arbitrary values

• Apply a (randomly selected) set of input variables x

• Let the network compute the output variables y

• For the next iteration correct the weight and bias factors based on the error e = y* − y :

 Wcorrected = W + ∆W = W + η · δ · xT with δ= F’(u) · (y* – y)

 bcorrected = b + ∆b = b + η · δ · 1 F’(u) is a m x m diagonal matrix with ele-

 ments ∂f(u)/∂t|u=u(x) on the main diagonal.

• Repeat the above procedure, until the error |e| for all available sets of input variables is small
enough.

0 < η << 1 is the so called learning rate. Small values lead to slow convergence, big values may
lead to instability. Frequently the learning rate is adapted during the learning process starting
with a big value and gradually decreasing it.

It has been shown by Widrow and Hoff, that with a suitable small η this algorithm will always
converge, provided that the given problem can be solved using a single layer feedforward net-
work. If f(u) can’t be differentiated (as with hard limiting activation functions), use ∂f(u)/∂t=1.

See the literature for Widows-Hoff’s proof. For a mathematical explanation of the delta rule see the appendix.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 13

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Example: Orange-Banana Classification (continued from page A.7, see Fruit.m for a Matlab program)

Training data sets Shape: x1

(−1=long, +1=oval)
Color: x2

(−1=yellow, +1=red)
Category: Y

(0=banana , 1=orange)

Data Set A −1 −1 0

Data Set B −1 +1 1

Data Set C +1 −1 1

Data Set D +1 +1 1

Initial weights and bias: w1,w2=1, b=−1, Learning rate η=1 (too big, but manual calc. here)

Step

→ Data

Set

x1 x2 y* w1 w2 b u=

w1x1+w2x2+b

 → y=f(u)

∆w1=

η (y*−y) x1
∆w2=

η (y*−y) x2
∆b=

η (y*-y)

1→ A −1 −1 0 1 1 −1 −3 → 0 0 0 0

2→ B −1 +1 1 1 1 −1 −1 → 0 −1 +1 +1
3→ B −1 +1 1 0 2 0 +2 → 1 0 0 0

4→ C +1 −1 1 0 2 0 −2 → 0 +1 −1 +1
5→ C +1 −1 1 1 1 1 +1 → 1 0 0 0

6→ D +1 +1 1 1 1 1 +3 → 1 0 0 0

7→ A −1 −1 0 1 1 1 −1 → 0 0 0 0

8→ B −1 +1 1 1 1 1 +1 → 1 0 0 0

. . . stable

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 14

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

5.2 Learning Process for Multilayer Feedforward Networks: Generalized Delta Rule or Error
Backprogagation

Generalized delta rule for supervised learning:

• Same iterative procedure as for the single layer network with the following corrections during
each iteration …

 … for the output layer with x0=yH:

 WO,corrected=WO+∆WO =WO+ η · δO · xO

T with δO=FO’(uO) · (y*– y)

 bO,corrected = bO + ∆bO = bO + η · δO · 1 FO’(uO) is a m x m diagonal matrix with elements

 ∂fO(uO)/∂t|uO=uO(x) on the main diagonal.

 … for the hidden layer:

 WH,corrected=WH+∆WH =WH+ η · δH · xT with δH= FH’(uH) · WO

T · δO

 bH,corrected = bH + ∆bH = bH + η · δH · 1 FH’(uH) is a k x k diagonal matrix with elements

 ∂fH(u)/∂t|u=uH(x) on the main diagonal.

The output layer is corrected proportional to the error δO ~ y*− y. The correction of the hidden
layer is based on the output layer’s error propagated backwards to the hidden layer.

For a mathematical explanation of the generalized delta rule see the appendix.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 15

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

6. Golf player example – continued from chapter 1

The golf player problem shall be solved by a two layer feedforward network. The inputs and
outputs are predefined by the problem:

 Inputs: e=[h; s] → n = 2 Outputs: y=[α; v] → m = 2

The number of neurons in the hidden layer k can be chosen freely. Two values were tried:

 k = 5 and k = 10

The two networks were trained using the ideal control algorithm derived from eq. (1) and (2)
and the sum of the squared error of y was plotted during the training process:

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

10
2

Number of Training Steps w ith 100 sets of input-output variables per step

S
u
m
-S
q
u
a
re
d
 E
rr
o
r

k = 5

k = 10

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 16

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

We note the following behavior, which is typical for feedforward networks:

• The error at the beginning of the training process depends on the initial mismatch of the
weight and bias factors.

• The network learns very fast at the beginning of the training process (here up to ~50 steps),
then the error improvement slows down.

• At the end of the training process the network with more neurons in the hidden layer shows
a smaller error (however it is much more complicated in realization).

To test the neural network, we let the net ‘play’ golf with s=80m, h=4m :

0 20 40 60 80 100m
0

1

2

3

4

5m

s

h

trained

neural network

target trajectory

net with k=10

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 17

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

The result is not perfect, but pretty good. However, trying with s=60m, h=2m shows, that
the net does not perform well in all operating points . . .

0 20 40 60 80 100m
0

1

2

3

4

5m

s

h

trained

neural network

target trajectory

net with k=10

0 20 40 60 80 100
0

1

2

3

4

5

Training data

s [m]

h
 [
m
]

The reason of the problems are clear, when we
look at the training data. The training set consist-
ed of 25 (s, h) pairs, which did not cover the
complete operating range and has big gaps. The
net will work much better for data sets, which are
close to those, for which it has been trained.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 18

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Some remarks about training:

• Input and output signals should be normalized to avoid numerical problems with weight fac-
tors with different orders of magnitude

• Use any available knowledge about input – output relations to select initial values for the
weight and bias factors.

• The set of input – output variables used for training should cover the complete operating
range. Neuronal networks are good in interpolation, but bad in extrapolation.

• Remove any outliers in the training data.

• Don’t overtrain the network. When the network is trained too long, it may work perfectly for
the set of training data, but may fail with other data. To test the quality of the trained net-
work, use another data set for verification.

• The number of network inputs and outputs normally is predefined by the problem to be
solved. However, the number of neurons in the hidden layer can be chosen freely:

- If the trained network shows good results (=small errors) during verification, try to
reduce the number of neurons in the hidden layer to make the network as simple as
possible.

- If the trained network does not show good results during verification, try to increase
the number of neurons in the hidden layer.

• Software packages like Matlab’s neural network toolbox come with more advanced training
methods (e.g. adaptive learning rate) which do converge faster than standard backpropagation.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 19

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

7. Applying Neural Networks in Control Engineering

7.1 Control Plant Models

For controller design and in observers of state space controllers models of the control plant are
needed. If the plant is heavily nonlinear or if it is difficult or impossible to mathematically de-
scribe the dynamic behavior of the plant (e.g. in many chemical processes), a neural network
can be used as a plant model:

Control

Plant

Output s igna lInput s igna l

O rig ina l contro l p lan t:

P lan t m ode l:

z
-1

z
-1

Neural

Network

.
.
.

z
-1

z
-1

.
.
.

Input s igna l O utput s igna l

The input signal and/or the output
signal is/are fed into the network via
unit delay chains to allow the net-
work to model the dynamic behavior
of the plant.

The number of delay elements must
be estimated.

Training data for the network is
generated by applying time signals
to the input of to the real plant and
by measuring its output signal.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 20

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

7.2 Nonlinear Controllers

A two layer feedforward network can be used as a nonlinear controller:

Neural

Network

Controller

Control

Plant

Linear

Controller

e.g. PI

Reference value

y
re f Contro lled

s igna l y

error signal

e=y
ref
 - y

 A classical linear controller (or state-space controller) can be connected in parallel to the
neural network to simplify the learning process or to eliminate steady state errors.

 As with classical controllers, additionally feeding the network with the time derivate
de

dt
 or

the time integral e dt of the error signal can improve the dynamic behavior.

 Training is done by applying reference signals and modifying the network parameters to
minimize the control error.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 21

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

7.3 Neural Network as Inverse Reference Model Controller

Closed loop control system (example):

y(k)y(k-1)

neural network controller

y(k-2)

∆y(k)

z-1z-1

z-1z-1

u(k-1)u(k-2)

y
ref
(k) control

plant

y(k)u(k)

A neural network shall be used as controller for a control plant. The neural network shall gener-
ate the actuator signal u and is fed by the control error ∆y=yref − y. Additionally the delayed
controlled signal y(k-1), y(k-2) and the delayed actuator signal u(k-1), u(k-2) are fed into the
network.

The network was trained to predict the actuator signal u(k) based on the control error ∆y(k) and
the past values of y and u.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 22

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Training arrangement

During training the network learns, which sequence of actuator signals u(k), u(k-1), u(k-2) lead
to the output signal sequence y(k+1), y(k-1), y(k-2), i.e. the network learns to look on sample
step ahead, i.e. it learns to minimize û(k)−u(k).

y(k)y(k-1)

neural network controller

y(k-2)

∆y(k)

z-1z-1

z-1z-1

u(k-1)u(k-2)

control

plant
y(k+1)

û(k)

signal

generator

u(k+1)

z-1

u(k)

z-1

y(k)

y(k+1)

The advantage of using the neural network here is, that the dynamic behavior of the control
plant need not be mathematically modeled, as the neural network learns the plant’s dynamics
from measured data.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 23

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

For a practical example see Matlab file NNControl.m on my web page:

0 1 2 3 4 5 6 7 8 9 1 0 s

- 1

0

1

T r a in in g d a t a s e t

0 1 2 3 4 5 6 7 8 9 1 0 s

- 1

0

1

N e u r a l N e t w o r k C o n t r o l l e d S y s t e m

y
ref

y

y

u

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 24

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Literature:

[1] M. Hagan, H. Demuth, M. Beale: Neural Network Design.

http://hagan.ecen.ceat.okstate.edu/ nnd.html
 These authors have written an excellent, but very expensive text book. Some of the book’s material, especially slides

from Prof. Hagan’s lectures, are available under the above link. The same people have also written Matlab’s Neural Net-

work Toolbox. Part of the User Guide is identical with the book.
[2] H.Demuth, M.Beale:
 Neural Network Toolbox. User’s Guide for the Matlab Toolbox.
 Math Works Inc., see the Matlab online documentation

[3] M. Mokhtari, M. Marie: Engineering Applications of Matlab and Simulink. Springer Verlag.

The book contains some theory and a lot of practical examples for all types of engineering problems. Unfortunately, the

book was written in French and later translated into English. In my opinion, the technical contents is easier to understand

than their English … So, if your French is good enough, maybe you’d better buy the French original.
[4] R. Rojas: Neural Networks – A Systematic Introduction. Springer Verlag. http://page.mi.fu-

berlin.de/~rojas/neural

There are a lot of books and texts about neural networks available in the FHTE library,
bookstores and on the internet. However, neural networks is still a domain with heavy research
(“work in progress”). A lot of books are very mathematically oriented, require sound knowledge
of linear algebra and optimization. Very often they either deal with theoretical aspects without
linking them to practical application or they report about practical applications assuming, that
the reader is already familiar with the necessary theory . . .

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 25

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Appendix A: Mathematical explanation of the learning rules

A.1 Delta learning rule for single layer feedforward networks

• In a training step an input vector x is applied expecting an output vector y*

• The networks real output vector is y = f (u) with u=W x + b

• So the error vector in this training step is e = y* − y

• The weight and bias factors shall be modified in order to minimize the sum of the squared er-
rors (a scalar value rather than a vector). The sum of the squared errors can be written as

 E =
1
2 
i=0

m

 (yi* - yi)² =
1
2 e

T e =
1
2 (y*

T · y* + yT · y – 2 yT · y*)

• The gradient of the sum E of the squared errors with respect to the weight matrix W is

∇E|W =
∂E

 ∂W =
∂E
 ∂u

∂u
 ∂W

with
∂u

 ∂W = x m x 1 vector

and δ = −
∂E
 ∂u = −

∂E
 ∂y ·

∂y
 ∂u = F’(u) · (y* − y) m x 1 vector

where F’(u) is a m x m diagonal matrix with diagonal elements
∂y
 ∂u =

∂f(u)
 ∂u |u=u(x)

i.e. the derivative of the activation functions at the current operating point u(x)

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 26

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

• The correction is done proportional to the gradient (direction of the steepest descent)

 Wcorrected = W − η · ∇E|W = W + η · δ · xT = W+ η · F’(u) · (y* – y) · xT

Notes: If
∂f(u)
 ∂u can not be computed, e.g. with hard limiting activation functions, set

∂f(u)
 ∂u to one.

δ and y*− y are m x 1 vectors, F’(u) is a m x m diagonal matrix, i.e. all elements outside the main diagonal

are 0. Thus for the element i, k this leads to Wi,k,corrected = Wi,k + η ·
∂f(u)
 ∂u |u=u(x) · (yi*− yi) · xk

Method of steepest descent:

Sum of squared errors

E =Σ (y* -y)²
m

 local

minimum

 global

minimum

gradients

w
ik

As always with gradient based methods, convergence may be slow or only a local minimum instead of a global minimum will

be reached. In computer based mathematical optimization packages like Matlab more advanced algorithms, basically modified

gradient based methods, exist to overcome these problems.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 27

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

•
 Doing the same with b leads to

 bcorrected = b − η · ∇E|b = b + η · δ = b + η · F’(u) · (y* – y)

A.2 Backpropagation algorithm for multilayer feedforward networks

• For the output layer we have exactly the same situation as with a single layer network (ex-
cept some variable renaming):

WO,corrected = WO − η · ∇E|WO = WO + η · δO · xOT

with xO = yH = fH (uH) , uH=WH · x + bH

and δO = −
∂E

 ∂uO
 = −

∂E
 ∂y ·

∂y
 ∂uO

 = FO’(u) · (y* − y) with FO’(u)=
∂fO(u)

 ∂u |uO=u(x)

• For the hidden layer we have:

WH,corrected = WH − η · ∇E|WH = WH + η · δH · xT

with δH = −
∂E

 ∂uH
 = −

∂E
 ∂uO

 ·
∂uO
 ∂yH

 ·
∂yH
 ∂uH

 = FH’(u) · WOT · δO with FH’(u)=
∂fH(u)

 ∂u |uH=u(x)

Comparing the results for δO and δH we see, that the error δO at the output layer is propagated
backwards to the hidden layer by the term FH’(u) · WOT

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 28

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Using Matlab’s Neuronal Network Toolbox

This chapter is only included in the online version of this manuscript.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 29

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Appendix B: Using Matlab’s Neural Network Toolbox

Here only the most basic command are described to get you started. For detailed information see the Neural Network Toolbox

User’s Guide available in HTML or in PDF-format in Matlab’s online documentation. To access it, in a Matlab command window

type doc nnet. For a short overview type help nnet. For help with a certain command use help <command>.

B.1 Creating Networks

Create a Perceptron network,

i.e. a single layer feedforward network with a hardlimiting ac-

tivation function (in Matlab: ‘hardlim’)

net = newp(minmax, nNeurons);

Parameters: nNeurons number of neurons

 minmax matrix with minimum and maximul values of the inputs:

[x1min x1max ;

 x2min x2max ;

 . . .]

These values are used for normalization. The number of rows

automatically defines the number of inputs

Create an Adalin network,

i.e. a single layer feedforward network with a linear activation

function (in Matlab: ‘purelin’)

net = newlin(minmax, nNeurons);

For a parameter description see newp().

Create a double layer feedforward network with error back-

propagation learning

net = newff(minmax, [nH nO], { fH fO });

Parameters: minmax matrix with minimum and maximul values of the inputs, see

newp() for details

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 30

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

 nH

nO

Number of neurons in the hidden layer

Number of neurons in the ouput layer

 fH

fO

Activation function of the hidden layer neurons

Activation function of the output layer neurons

Use one of ‘purelin’, ‘tansig’ or ‘logsig’. Please note,

that the activation functions are contained in ‘…’and the

complete list is contained in curly braces { … }

As with most Matlab functions there is a bundle of optional parameters which can be used to fine tune the network. To get

you started, normally default values are a good choice.

B2. Properties of the neural network object

Matlab manages neural networks as objects with a set of properties. To see, which properties a network has, simple type the

name of the network, e.g. net. The most important properties are:

net.inputs{1}.size Number of network inputs

net.numLayers Number of layers

net.layers{i}.size Number of neurons in layer i (i=1 input layer)

net.IW{1} Matrix of weight factors in the input layer

net.LW{2} Matrix of weight factors in the output layer (for double layer networks only)

net.b{i} Vector of bias factors for the layer i (i=1 input layer)

net.trainParam.epochs Maximum number of ‘epochs’ used when training the network. During a training ‘epoch’

each set of input variables is applied once and correction values for the weight and bias

factors are computed. This procedure is repeated ‘epochs’ times.

net.trainParam.goal Goal for the sum squared error. Network training will be stopped, when either the error

goal or the maximum number of epochs is reached.

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 31

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Please note, many of the properties use Matlab’s data type cell array. Cell arrays are some sort of super matrices, where each

cell array element can contain elements of different data types and sizes. To access a cell array element, you must use curly

braces {...} to index the cell array. If the cell array element itself is a normal matrix, to access one of the matrix elements,

you must use round round braces (...) to index the matrix, e.g. to access the element in the 2nd row, 4th column of the out-

put layer weight matrix of a double layer feedforward net, use net.LW{2}(2,4). To display a complete cell array, use

celldisp(…).

B3. Training of the Neural Network

Learning procedure to adapt weight and bias factors.

(Initial values will be selected automatically)

net.trainParam.epochs=500; //optional, default: 100

net = train(net, x, yS);

Parameters: net The neural network as created in B.1

 x Input variable training sets in the following format:

[x11 x12 x13 . . . ;

 x21 x22 x23 . . . ;

 . . .]

Each column contains one set of input signals

 yS Output variable training sets. Same format as x.

B3. Testing the Neural Network

Compute the networks output variables for one (or more) sets

of input variables.

y = sim(net, x);

Parameters: net The neural network as created in B.1

 x, y Format described in B.3

 Hochschule Esslingen MSc IA - System Design - Module Neural Networks 32

 V2.4 Oct. 21 Copyright Prof. Zimmermann - All rights reserved SD2_5A.doc

Matlab files for the orange - banana sorting net (Fruit1.m) and the golf playing net (Golf.m), demonstrating how to use these

toolbox functions, can be found on the web site for my lecture.

The Neural Network Toolbox also comes with a graphical user interface to help design networks. To start it in a Matlab com-

mand window type nntool. For a tutorial how to use it, see the toolbox user’s guide, chapter 3. Perceptrons, GUI (pg. 3-23 in

the PDF-version).

The toolbox also comes with several examples. Some interesting ones are:

nnd2n1 Demonstrate several activation functions.

 nnd4pr Demonstrate perceptron learning (single layer feedforward net)

 nnd11bc Demonstrate error backpropagation learning (double layer feedforward net)

Click on the ‘Contents’ button in one of the demos to see a complete list of available demos.

Please note:

Matlab unfortunately names activation functions as ‘transfer function’, which is quite confusing, because this is a static non-

linear function, whereas ‘transfer function’ in control engineering is the name for linear Laplace s-domain or z-domain functions,

describing the dynamic characteristics of linear systems.

